Introduction
There are 613 records in this dataset.
Sources of Income
Code
#include_graphics(here("output/viz/income sources 2.png"))
Code
inc2 <- read_csv(here("output/tables/Income sources.csv"),
show_col_types=F)
inc_gt <- inc2 %>%
dplyr::select(`Income source` = lab, Percent=mean) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
inc_gt
| Income source |
Percent |
|
| Farm/crop production |
90% |
|
| Wild bush sales |
46% |
|
| Goat production/sales |
31% |
|
| Fishing and sales |
23% |
|
| Cattle production/sales |
22% |
|
| Ag wage labor in village |
20% |
|
| Petty trade own products |
18% |
|
| Petty trade other products |
15% |
|
| Food / cash safety net |
14% |
|
| Salaried work |
12% |
|
| Other self-employment non-ag |
10% |
|
| Wage labor in village |
8% |
|
| Sheep production/sales |
8% |
|
| Honey production/sales |
6% |
|
| Ag wage labor outside village |
5% |
|
| Other self-employment ag |
5% |
|
| Other |
5% |
|
| Remittances |
2% |
|
| Wage labor outside village |
1% |
|
| Gifts/inheritance |
1% |
|
| Rental of land/property |
0% |
|
Household Hunger Scale
Code
hhs <- read_csv(here("output/tables/Household hunger scale.csv"),
show_col_types=F)
hhs_gt <- hhs %>%
dplyr::select(1, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
hhs_gt
| In previous four weeks.. |
Percent |
|
| Lack of resources to get food |
86% |
|
| Went to sleep hungry |
89% |
|
| Whole day without eating |
75% |
|
| Severe household hunger |
10% |
|
Code
include_graphics(here("output/viz/household hunger bar.png"))
Code
hhs_sev_cnty <- read_csv(here("output/tables/hhs severe county.csv"),
show_col_types=F)
hhs_sev_cnty_gt <- hhs_sev_cnty %>%
dplyr::select(county, hhs_severe) %>%
mutate(Bar=hhs_severe*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(hhs_severe="Severe household hunger",
Bar="")
hhs_sev_cnty_gt
| county |
Severe household hunger |
|
| Pibor |
40% |
|
| Akobo |
17% |
|
| Jur River |
3% |
|
| Wau |
2% |
|
| Budi |
1% |
|
| Kapoeta North |
0% |
|
Household Shocks
Code
shk <- read_csv(here("output/tables/Shock incidence.csv"),
show_col_types=F)
shk_gt <- shk %>%
dplyr::select(Shock, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
shk_gt
| Shock |
Percent |
|
| Increase in food prices |
98% |
|
| Drought |
67% |
|
| Floods |
50% |
|
| Theft |
39% |
|
| Erosion |
28% |
|
| Loss of land |
17% |
|
Code
include_graphics(here("output/viz/Exposure to shocks.png"))
Code
shocks_sev_cnty <- read_csv(here("output/tables/Shock severity county.csv"),
show_col_types = F)
shocks_sev_cnty_gt <- shocks_sev_cnty %>%
dplyr::select(County, shocks_sev) %>%
gt() %>%
fmt_number(2, decimals=1) %>%
cols_label(shocks_sev="Shock severity (0-24)")
shocks_sev_cnty_gt
| County |
Shock severity (0-24) |
| Akobo |
13.8 |
| Pibor |
13.7 |
| Jur River |
9.9 |
| Wau |
7.0 |
| Kapoeta North |
6.4 |
| Budi |
5.5 |
Resilience
Code
resil <- read_csv(here("output/tables/Resilience binaries.csv"),
show_col_types=F)
resil_gt <- resil %>%
dplyr::select(Resilience, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
resil_gt
| Resilience |
Percent |
|
| Have learned from past shocks |
71% |
|
| Can rely on family and friends |
59% |
|
| Able to change livelihood to adapt to any shock |
56% |
|
| Able to adapt to increased frequency or severity of shock |
54% |
|
| Able to recover from shock |
53% |
|
| Prepared for future shock |
51% |
|
| Can rely on government support |
40% |
|
| Able to access financial support |
35% |
|
Natural resource management
Aspirations
Code
asp <- read_csv(here("output/tables/Aspirations binaries.csv"),
show_col_types = F)
asp_gt <- asp %>%
dplyr::select(Aspiration, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
asp_gt
| Aspiration |
Percent |
|
| Hopeful for children's future |
91% |
|
| To be successful, above all one needs to work very hard |
86% |
|
| Each person is primarily responsible for is/her success or failure in life |
85% |
|
| Desire at least secondary school education for children |
84% |
|
| Things turn out to be a matter of good or bad fortune (disagree) |
22% |
|
| My experience in life has been that what is going to happen will happen (disagree) |
16% |
|
Social norms
Code
q812 <- read_csv(here("output/tables/q812.csv"),
show_col_types = F)
q812_gt <- q812 %>%
dplyr::select(gbv_lab, Percent) %>%
mutate(Bar=Percent*100) %>%
arrange(desc(Percent)) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(gbv_lab="Acceptability of violence",
Bar="")
q812_gt
| Acceptability of violence |
Percent |
|
| Never |
55% |
|
| Within a relationship, married |
23% |
|
| To resolve dispute within the family |
11% |
|
| In a time of conflict |
5% |
|
| To resolve a dispute within a marriage |
3% |
|
| Within a relationship, unmarried |
2% |
|
| Other |
1% |
|
Code
gbv_accept_cnty <- read_csv(here("output/tables/Gender based violence acceptance county.csv"),
show_col_types = F)
gbv_accept_cnty_gt <- gbv_accept_cnty %>%
dplyr::select(County, gbv_accept) %>%
mutate(Bar=gbv_accept*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(gbv_accept="Acceptibility of gender-based violence",
Bar="")
gbv_accept_cnty_gt
| County |
Acceptibility of gender-based violence |
|
| Wau |
74% |
|
| Akobo |
64% |
|
| Kapoeta North |
41% |
|
| Pibor |
41% |
|
| Budi |
31% |
|
| Jur River |
19% |
|
Girls’ education
::: panel-tabset
Bride price
Code
bp <- read_csv(here("output/tables/Bride price binaries.csv"),
show_col_types=F)
bp_gt <- bp %>%
dplyr::select(Attitude, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(Bar="")
bp_gt
| Attitude |
Percent |
|
| Bride price an important tradition |
92% |
|
| Willing to accept a bride price for daughter in household |
68% |
|
| Bride price an acceptable transaction |
54% |
|
Code
bp_accept_cnty <- read_csv(here("output/tables/Bride price acceptance county.csv"),
show_col_types = F)
bp_accept_cnty_gt <- bp_accept_cnty %>%
dplyr::select(County, bp_accept) %>%
mutate(Bar=bp_accept*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(bp_accept="Acceptability of bride price",
Bar="")
bp_accept_cnty_gt
| County |
Acceptability of bride price |
|
| Budi |
94% |
|
| Pibor |
84% |
|
| Kapoeta North |
81% |
|
| Akobo |
67% |
|
| Wau |
46% |
|
| Jur River |
36% |
|
Trafficking in persons
Code
traffic_accept <- read_csv(here("output/tables/q829 TIP.csv"),
show_col_types = F)
traffic_accept_gt <- traffic_accept %>%
dplyr::select(traffic_labs, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(traffic_labs="Trafficking Acceptability",
Bar="")
traffic_accept_gt
| Trafficking Acceptability |
Percent |
|
| Revenge |
6% |
|
| Money |
0% |
|
| Have more children |
0% |
|
| Never acceptable |
94% |
|
Code
TIP_agree <- read_csv(here("output/tables/TIP Binaries.csv"),
show_col_types = F)
TIP_gt <- TIP_agree %>%
dplyr::select(TIP_agree, Percent) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(TIP_agree="Acceptance of Trafficking",
Bar="")
TIP_gt
| Acceptance of Trafficking |
Percent |
|
| To Get Cattle |
11% |
|
| To Obtain A Wife |
8% |
|
| To Get Land |
5% |
|
Code
TIP_accept_cnty <- read_csv(here("output/tables/TIP acceptance county.csv"),
show_col_types = F)
TIP_accept_cnty_gt <- TIP_accept_cnty %>%
dplyr::select(County=county, Percent=traffic_accept) %>%
mutate(Bar=Percent*100) %>%
gt() %>%
gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
cols_width(3 ~ px(125)) %>%
fmt_percent(2, decimals=0) %>%
cols_label(#traffic_labs="Trafficking Acceptability",
Bar="")
TIP_accept_cnty_gt
| County |
Percent |
|
| Akobo |
31% |
|
| Pibor |
3% |
|
| Budi |
2% |
|
| Jur River |
1% |
|
| Kapoeta North |
0% |
|
| Wau |
0% |
|
Social norms
Code
Code
Girls’ education
::: panel-tabset
Bride price
Code
Code
Trafficking in persons
Code
Code
Code