South Sudan

Resilience Panel Survey

Published

June 14, 2023

Introduction

There are 613 records in this dataset.

Household structure

Sources of Income

Code
#include_graphics(here("output/viz/income sources 2.png"))
Code
inc2 <- read_csv(here("output/tables/Income sources.csv"),
                show_col_types=F)

inc_gt <- inc2 %>%
  dplyr::select(`Income source` = lab, Percent=mean) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

inc_gt
Income source Percent
Farm/crop production 90%
Wild bush sales 46%
Goat production/sales 31%
Fishing and sales 23%
Cattle production/sales 22%
Ag wage labor in village 20%
Petty trade own products 18%
Petty trade other products 15%
Food / cash safety net 14%
Salaried work 12%
Other self-employment non-ag 10%
Wage labor in village 8%
Sheep production/sales 8%
Honey production/sales 6%
Ag wage labor outside village 5%
Other self-employment ag 5%
Other 5%
Remittances 2%
Wage labor outside village 1%
Gifts/inheritance 1%
Rental of land/property 0%

Food Insecurity

Household Hunger Scale

Code
hhs <- read_csv(here("output/tables/Household hunger scale.csv"),
                show_col_types=F)

hhs_gt <- hhs %>%
  dplyr::select(1, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

hhs_gt
In previous four weeks.. Percent
Lack of resources to get food 86%
Went to sleep hungry 89%
Whole day without eating 75%
Severe household hunger 10%
Code
include_graphics(here("output/viz/household hunger bar.png"))

Code
hhs_sev_cnty <- read_csv(here("output/tables/hhs severe county.csv"),
                         show_col_types=F)

hhs_sev_cnty_gt <- hhs_sev_cnty %>%
  dplyr::select(county, hhs_severe) %>%
  mutate(Bar=hhs_severe*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(hhs_severe="Severe household hunger",
    Bar="")

hhs_sev_cnty_gt
county Severe household hunger
Pibor 40%
Akobo 17%
Jur River 3%
Wau 2%
Budi 1%
Kapoeta North 0%

Household Shocks

Code
shk <- read_csv(here("output/tables/Shock incidence.csv"),
                show_col_types=F)

shk_gt <- shk %>%
  dplyr::select(Shock, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

shk_gt
Shock Percent
Increase in food prices 98%
Drought 67%
Floods 50%
Theft 39%
Erosion 28%
Loss of land 17%
Code
include_graphics(here("output/viz/Exposure to shocks.png"))

Code
shocks_sev_cnty <- read_csv(here("output/tables/Shock severity county.csv"),
                            show_col_types = F)

shocks_sev_cnty_gt <- shocks_sev_cnty %>%
  dplyr::select(County, shocks_sev) %>%
  gt() %>%
  fmt_number(2, decimals=1) %>%
  cols_label(shocks_sev="Shock severity (0-24)")

shocks_sev_cnty_gt
County Shock severity (0-24)
Akobo 13.8
Pibor 13.7
Jur River 9.9
Wau 7.0
Kapoeta North 6.4
Budi 5.5

Resilience

Code
resil <- read_csv(here("output/tables/Resilience binaries.csv"),
                  show_col_types=F)

resil_gt <- resil %>%
  dplyr::select(Resilience, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

resil_gt
Resilience Percent
Have learned from past shocks 71%
Can rely on family and friends 59%
Able to change livelihood to adapt to any shock 56%
Able to adapt to increased frequency or severity of shock 54%
Able to recover from shock 53%
Prepared for future shock 51%
Can rely on government support 40%
Able to access financial support 35%

Development assistance

Natural resource management

Conflict

Community actions plans

Code
emerg <- read_csv(here("output/tables/Community action plan binaries.csv"),
                  show_col_types = F)

emerg_gt <- emerg %>%
  dplyr::select(Item, Percent) %>%
  gt() %>%
  fmt_percent(2, decimals=0)

emerg_gt
Item Percent
Community has emergency action plan 54%
Plan addresses at least one shock that affects community 89%
Plan is effective 19%
Code
emerg_cnty <- read_csv(here("output/tables/Emergency action plans county.csv"),
                       show_col_types = F)

emerg_cnty_gt <- emerg_cnty %>%
  #dplyr::select(County, emerg_resc) %>%
  gt() %>%
  fmt_percent(2:4, decimals=0) %>%
  cols_label(emerg_plan="Emergency plan in place",
             emerg_targeted="Plan targeted to need",
             emerg_effective_bin="Plan effective")

emerg_cnty_gt
County Emergency plan in place Plan targeted to need Plan effective
Akobo 64% 100% 3%
Budi 41% 90% 3%
Jur River 58% 71% 24%
Kapoeta North 32% 97% 12%
Pibor 67% 100% 40%
Wau 62% 79% 22%

Aspirations

Code
asp <- read_csv(here("output/tables/Aspirations binaries.csv"),
                show_col_types = F)

asp_gt <- asp %>%
  dplyr::select(Aspiration, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

asp_gt
Aspiration Percent
Hopeful for children's future 91%
To be successful, above all one needs to work very hard 86%
Each person is primarily responsible for is/her success or failure in life 85%
Desire at least secondary school education for children 84%
Things turn out to be a matter of good or bad fortune (disagree) 22%
My experience in life has been that what is going to happen will happen (disagree) 16%

Social norms

Code
q812 <- read_csv(here("output/tables/q812.csv"),
                show_col_types = F)

q812_gt <- q812 %>%
  dplyr::select(gbv_lab, Percent) %>%
  mutate(Bar=Percent*100) %>%
  arrange(desc(Percent)) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(gbv_lab="Acceptability of violence",
             Bar="")

q812_gt
Acceptability of violence Percent
Never 55%
Within a relationship, married 23%
To resolve dispute within the family 11%
In a time of conflict 5%
To resolve a dispute within a marriage 3%
Within a relationship, unmarried 2%
Other 1%
Code
gbv_accept_cnty <- read_csv(here("output/tables/Gender based violence acceptance county.csv"),
                            show_col_types = F)

gbv_accept_cnty_gt <- gbv_accept_cnty %>%
  dplyr::select(County, gbv_accept) %>%
  mutate(Bar=gbv_accept*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(gbv_accept="Acceptibility of gender-based violence",
             Bar="")

gbv_accept_cnty_gt
County Acceptibility of gender-based violence
Wau 74%
Akobo 64%
Kapoeta North 41%
Pibor 41%
Budi 31%
Jur River 19%

Girls’ education

::: panel-tabset

Bride price

Code
bp <- read_csv(here("output/tables/Bride price binaries.csv"),
               show_col_types=F)

bp_gt <- bp %>%
  dplyr::select(Attitude, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(Bar="")

bp_gt
Attitude Percent
Bride price an important tradition 92%
Willing to accept a bride price for daughter in household 68%
Bride price an acceptable transaction 54%
Code
bp_accept_cnty <- read_csv(here("output/tables/Bride price acceptance county.csv"),
                           show_col_types = F)

bp_accept_cnty_gt <- bp_accept_cnty %>%
  dplyr::select(County, bp_accept) %>%
  mutate(Bar=bp_accept*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(bp_accept="Acceptability of bride price",
             Bar="")

bp_accept_cnty_gt
County Acceptability of bride price
Budi 94%
Pibor 84%
Kapoeta North 81%
Akobo 67%
Wau 46%
Jur River 36%

Trafficking in persons

Code
traffic_accept <- read_csv(here("output/tables/q829 TIP.csv"),
                             show_col_types = F)

traffic_accept_gt <- traffic_accept %>%
  dplyr::select(traffic_labs, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(traffic_labs="Trafficking Acceptability",
             Bar="")

traffic_accept_gt
Trafficking Acceptability Percent
Revenge 6%
Money 0%
Have more children 0%
Never acceptable 94%
Code
TIP_agree <- read_csv(here("output/tables/TIP Binaries.csv"),
                      show_col_types = F)

TIP_gt <- TIP_agree %>%
  dplyr::select(TIP_agree, Percent) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(TIP_agree="Acceptance of Trafficking",
              Bar="")

TIP_gt
Acceptance of Trafficking Percent
To Get Cattle 11%
To Obtain A Wife 8%
To Get Land 5%
Code
TIP_accept_cnty <- read_csv(here("output/tables/TIP acceptance county.csv"),
                            show_col_types = F)

TIP_accept_cnty_gt <- TIP_accept_cnty %>%
  dplyr::select(County=county, Percent=traffic_accept) %>%
  mutate(Bar=Percent*100) %>%
  gt() %>%
  gt_plt_bar_pct(column=Bar, fill=usaid_blue, background=light_grey, scaled=T) %>%
  cols_width(3 ~ px(125)) %>%
  fmt_percent(2, decimals=0) %>%
  cols_label(#traffic_labs="Trafficking Acceptability",
             Bar="")

TIP_accept_cnty_gt
County Percent
Akobo 31%
Pibor 3%
Budi 2%
Jur River 1%
Kapoeta North 0%
Wau 0%